发布作品

    汽车感知产业军备竞赛打响!国产机会如何?

    感知芯视界头像感知芯视界头像
    感知芯视界2022-03-29


    编辑| 感知芯视界


    单车传感器数量随着各类高阶辅助驾驶功能的渗透率不断提升,激光雷达、车载摄像头、毫米波雷达与超声波雷达作为四大感知传感器有望快速放量,为高阶自动驾驶的商业化落地夯实基础。本期感知芯视界内参推荐国信证券汽车智能化系列专题《感知篇-终端智能化军备竞赛打响,中游各知硬件放量先行》,本篇将围绕着各类感知硬件从其概念、技术路径、发展趋势、竞争格局、核心参与者以及市场空间等内容展开。


    来源:国信证券


    原标题:汽车智能化系列专题《感知篇-终端智能化军备竞赛打响,中游各知硬件放量先行》


    作者:熊莉


    获取本期83页PDF报告下载,可在感知芯视界首页对话框回复“汽车感知”免费下载。


    01

    感知篇:环境感知+车身感知+网联感知组成车载感知系统


    整个车载感知系统主要包括环境感知、车身感知与网联感知三大部分。其中,(1)环境感知:主要负责车辆从外界获取信息,如附近车辆、车道线、行人、建筑物、障碍物、交通标志、信号灯等,主要包括四大类别的硬件传感器车载摄像头、毫米波雷达、激光雷达、超声波雷达;(2)车身感知:主要负责车辆对自身状态的感知,如车辆位置、行驶速度、姿态方位等,主要包括惯性导航、卫星导航和高精度地图;(3)网联感知:主要负责实现车辆与外界的网联通信以此来获得道路信息、行人信息等,主要包括各类路侧设备、车载终端以及V2X云平台等。


    四大硬件传感器是自动驾驶汽车的眼睛,是环境感知的关键。车载传感器主要包括车载摄像头、毫米波雷达、激光雷达、超声波雷达四大类。


    自动驾驶汽车首先是对环境信息与车内信息的采集、处理与分析,这是实现车辆自主驾驶的基础和前提。环境感知是自动驾驶车辆与外界环境信息交互的关键,车辆通过硬件传感器获取周围的环境信息,环境感知是一个复杂的系统,需要多种传感器实时获取信息,各类硬件传感器是自动驾驶汽车的眼睛。


    单车传感器数量倍增,为高阶自动驾驶落地夯实基础


    当前自动驾驶正处在L2向L3级别跨越发展的关键阶段。其中,L2级的ADAS是实现高等级自动驾驶的基础,从全球各车企自动驾驶量产时间表来看,L3级别自动驾驶即将迎来大规模地商业化落地。


    随着自动驾驶级别的提升,单车传感器的数量呈倍级增加。预计自动驾驶Level1-2级需要10-20个传感器,Level3级需要20-30个传感器,Level4-5级需要40-50个传感器。


    政策指引,助力高阶辅助驾驶ADAS快速落地

    各国政策不断刺激,助力高阶辅助驾驶ADAS快速落地。中国自2016年开始出台各项政策,逐步强制商用车搭载LDW、FCW、LKA、AEB等ADAS功能。


    各国新车测试标准不断增加对主动安全ADAS功能的权重。NCAP(NewCarAssessmentProgram,新车测试项目)是测试机构对新车型的车辆安全水平进行全面评估,并直接面向公众公布试验结果。NCAP是民间组织,不受政府机构组织控制。碰撞测试成绩则由星级表示,共有五个星级,星级越高表示该车的碰撞安全性能越好。


    多传感器融合,定义自动驾驶汽车的“慧眼”


    为了使汽车感知系统形成有效互补,多传感器融合已成为众多主机厂来提高自身智能驾驶能力的核心技术之一。为了应对不同的场景和保证车辆的安全保证,多传感器融合成为行业趋势。


    多传感器融合技术的主要优势有提升感知系统的准确度,提升感知维度,进而提升系统决策的可靠性和置信度,以及增强环境适应能力。总之,多传感器技术能够利用空间或时间上的冗余或者互补信息,基于优化算法对被观测对象进行更全全面的分析:


    多传感器对于车载系统也提出了新的要求,需要有统一的同步时钟,以此保证传感器信息的时间一致性和正确性;此外,准确的多传感器标定,保证相同时间下不同传感器信息的空间一致性。从多传感体系的融合结构上,主要可以分为分布式、集中式和混合式三种。

    02

    环境感知之一:激光雷达


    激光雷达是L3级以上自动驾驶的必备传感器

    激光雷达,即(LiDAR,LightDetectionandRanging),是一种通过发射激光束来测量周围环境物体的距离和方位的方法。激光雷达主要由发射模块、处理模块和接收模块组成,其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,做适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态及形状等参数,从而对障碍物、移动物体等目标进行探测、追踪和识别。


    激光雷达是当下已知的车载雷达中探测距离远,角度测量精度极高的一种。激光雷达可以准确的感知周边环境的三维信息,探测精度在厘米级以内。激光雷达能够准确的识别出障碍物具体轮廓、距离成3D点云,且不会漏判、误判前方出现的障碍物,激光雷达普遍的有效探测距离也更远。与毫米波雷达和摄像头相比,激光雷达具备高分辨率、远距离和视角广阔等特性。


    车载雷达的发展历史可以追溯到21世纪初,在2007年,美国国防部组织的DARPA无人车挑战赛上,参赛的7只队伍,就有6只安装了Velodyne的激光雷达。2010年Ibeo公司同法雷奥合作进行车规化激光雷达SCALA的开发,SCALA为基于转镜架构的4线激光雷达,在2017年成为了全球第一款车规级激光雷达,SCALA并在当年搭载在全新的奥迪A8上。


    在测绘之外,智能驾驶、工业及服务机器人都是激光雷达的重要应用场景。智能驾驶将是未来五年激光雷达市场的主要增长动力。根据Yole的预测,2019年全球激光雷达市场规模约为16亿美金,预计到2025年全球激光雷达市场规模将达到38亿美金,年复合增长率约为20%。

    目前主流的自动驾驶技术路径主要分两种:


    (1)以特斯拉为代表的视觉算法为主导的流派。以摄像头主导,搭配毫米波雷达来捕捉周边环境信息,使用先进的计算机视觉算法实现全自动驾驶。


    (2)以Waymo、部分车企为代表的激光雷达主导的流派。以激光雷达为主,同时搭载毫米波雷达、超声波传感器和摄像头,可以进行远距离、全方位的探测,分辨率较强,但硬件成本较高,典型代表为谷歌Waymo、百度Apollo、文远知行等主流无人驾驶企业。


    激光雷达是车载摄像头与毫米波雷达的有效补充,将是L3级及以上自动驾驶的必备传感器。即便是纯视觉的方案从效果上能够一定程度代替激光雷达的自动驾驶方案,但是对于高阶自动驾驶而言,安全驾驶是其重要的一步,在感知环节的传感器冗余能够有限提升车辆的安全冗余,激光雷达将是L3及以上自动驾驶的必备传感器。


    混合固态短期会是主流,固态芯片化是终极形态


    激光雷达主要由光束扫描器和探测系统两个维度组成,一个负责成像,一个负责测距。按光束扫描器结构大致可划分为三类:机械式、混合固态和固态激光雷达;按照扫描方式分为机械旋转式、MEMS(微振镜)、微距移动、Flash、OPA(光学相控阵)等。


    ToF激光雷达是当前的主流,未来ToF与FMCW会共存。按照探测方式来分,分成了非相干测量(脉冲飞行时间测量法ToF为代表)和相干测量(典型为FMCW调频连续波)。ToF与FMCW能够实现室外阳光下较远的测程(100~250m),是车载激光雷达的优选方案。


    ToF是目前市场车载中长距激光雷达的主流方案,未来随着FMCW激光雷达整机和上游产业链的成熟,ToF和FMCW激光雷达将在市场上并存。


    混合固态方案作为当前市场的过渡期预计将存在5年以上,终极形态的激光雷达会是低成本、高度芯片化的产品。


    固态激光雷达是终极形态,混合固态MEMS等方案短期内会是主流。机械式激光雷达技术本身成熟,但具有成本较高、装配调制困难、生产周期长,且需要持续旋转,机械部件的寿命较短,一般在1-2年,很难应用在规模量产车型上。


    MEMS混合固态激光雷达一方面具有尺寸小、可靠性高、批量生产后成本低、分辨率较高等优势,另一方面也存在信噪比低、有效距离短、视场角窄、工作寿命较短等缺点。MEMS方案是当下车用激光雷达量产的最优解,但是MEMS微振镜扫描角度小、振动问题与工作温度范围,过车规也存在挑战。固态方案不用受制于机械旋转的速度和精度,可大大压缩雷达的结构和尺寸,提高使用寿命,并降低成本。


    芯片化将会是激光雷达的架构趋势。当前大部分ToF激光雷达产品采用分立器件,即发射端使用边发射激光器EEL配合多通道驱动器、接收端使用线性雪崩二极管探测器(APD)配合多通道跨阻放大器(TIA)的方案。但分立器件仍存在零部件多、生产成本高、可靠性低等问题,芯片化架构的激光雷达可将数百个分立器件集成于一颗芯片,在降低物料成本的同时,省去了对每一个激光器进行独立光学装调的人力生产成本。此外,器件数量的减少,可以显著降低因单一器件失效而导致系统失效的概率,提升了可靠性。芯片化架构的激光雷达是未来的发展方向。

    激光雷达成本拐点来临,大规模商业化落地在即


    激光雷达的成本构成。激光雷达本质是一个由多种部件构成的光机电系统,光电系统包括发射模组、接收模组、测时模组(TDC/ADC)和控制模组四部分构成,其中,光电系统成本约占激光雷达整机成本的70%。


    激光雷达上游产业链主要包括激光器和探测器、FPGA芯片、模拟芯片供应商,以及光学部件生产和加工商。激光器和探测器是激光雷达的重要部件,激光器和探测器的性能、成本、可靠性与激光雷达产品的性能、成本、可靠性密切相关。


    激光器主流供应商有欧司朗、艾迈斯半导体、鲁门特姆,探测器主流供应商有滨松、安森美、索尼等。FPGA通常被用作激光雷达的主控芯片,主流供应商有赛灵思、英特尔等,除了FPGA之外,也可以选用MCU、DSP等代替。MCU的主流供应商有瑞萨、英飞凌等,DSP的主流供应商有德州仪器、亚德诺半导体等。而在相关光学部件上,国内供应链已经完全实现替代海外,实现自主供应。



    随着相关技术和产业链日益成熟,激光雷达的成本拐点即将来临。Velodyne宣布计划到2024年将平均单价将下降到600美元,华为也宣布未来计划将激光雷达的价格控制在200美金以内。随着相关技术逐渐成熟和供应链体系的逐步完善,当前混合固态的激光雷达平均价格约在1000美元左右,预计到2023年左右成本有望下探到500美元。随着激光雷达的成本拐点逐步到来,也为大规模商用打造了充分的基础。


    2022年有望成为激光雷达大规模商业的元年。在2021年,如蔚来ET7、智已L7、极狐阿尔法S、哪吒S、R汽车等都已宣布搭载激光雷达的车型正在量产路上,在前不久的广州车展上,威马M7、广汽埃安AIONLXPlus等均宣布了搭载2~3颗激光雷达,长城最新发布的沙龙机甲龙更是配备4颗激光雷达。这些车型大多在2022年量产,2022年有望成为激光雷达大规模商业的元年。


    03环境感知之二:车载摄像头


    单车摄像头数量持续增加,天花板不断打开


    车载摄像头是环境感知中最常见的传感器之一。摄像头的工作原理即目标物体通过镜头生成光学图像投射到图像传感器上,光信号转变为电信号,再经过A/D(模数转换)后变为数字图像信号,最后送到DSP(数字信号处理芯片)中进行加工处理,由DSP将信号处理成特定格式的图像传输到显示屏上进行显示。


    视觉是人类驾驶汽车获取环境信息最主要的途径,摄像头获取的信息更为直观,更接近人类的视觉,对于自动驾驶汽车而言,摄像头取代了人类视觉,成为了汽车获取外界信息的重要来源。


    车载摄像头的优点十分明显,成本低且技术成熟,采集信息的丰富度较高,最接近人类视觉,但其缺点也十分显著,摄像头受光照、环境影响十分大,难以全天候工作,尤其是在黑夜、雨雪天、大雾等能见度不足的场景下,其识别效率大大降低,此外,车载摄像头缺乏深度信息,三维空间感不足。


    图像传感器成本占比超过五成,CMOS为当下主流选择。车载摄像头的硬件结构包括光学镜头(光学镜片、滤光片、保护膜)、图像传感器、图像信号处理器(ISP)、串行器、连接器等器件。成本结构成上,图像传感器成本占比最高,成本占比达到50%,CMOS图像传感器具有读取信息方式简单、输出信息速率快、耗电少、集成度高、价格低等特点,成为目前目前主流的车载图像传感器。


    车载镜头舜宇排名第一,联创电子正在快速崛起。根据ICVTank在2019年的数据显示,舜宇光学全球车载摄像头出货量第一,市占率超过30%,韩国世高光、日本关东辰美、日本富士占绝行业前四名,前四名市占率超过80%。国产方面,除舜宇之外,联创电子是国内唯二具备较强竞争力的厂商,目前已经进入特斯拉、蔚来等产业链,正在快速崛起。


    车载CIS呈现寡头格局,韦尔收购豪威科技一跃成为行业第二。车载CIS(CMOSImageSensor)是当下主流的车载摄像头图像传感器方案,其中安森美是绝对的车载CIS龙头,市占率超过六成,豪威科技位列第二,市占率约为20%,索尼和三星作为手机CIS的龙头,进入车载市场较晚,正在快速切入。国产厂商方面,韦尔股份收购豪威科技后,一跃成为车载CIS龙头,正在迅速崛起。


    中游模组主要由海外公司主导,国产比例仍然较低。由于车规级摄像头模组的安全性和稳定性要求更高,模组封装工艺更为复杂,在竞争格局方面,主要由海外公司占据主要市场份额,松下、法雷奥、富士通、大陆、麦格纳等占据市场主要地位,国产方面,舜宇光学、联创电子等为代表的摄像头模组企业正在快速布局车载领域。



    各家整车厂新车型的摄像头搭载数量持续上升。从各家最新发布的车型搭载方案来看,造车新势力的单车搭载摄像头数量平均已超过10颗。


    2021年最新发布的蔚来ET7共搭载了11颗摄像头,小鹏计划于2022年量产的G9车型预计将搭载12颗摄像头,极氪001更是搭载了15颗摄像头,各家车企不断增加前视、环视、后视和内视等各方位的摄像头,为了高阶辅助驾驶的落地创造了坚实的基础。


    特斯拉Model3的感知系统包括了8个摄像头+12个超声波雷达+1个毫米波雷达。


    单车搭载摄像头数量持续增加,预计到23年有望超过平均每台车3颗。根据佐思汽研数据,2021Q1中国乘用车市场车载摄像头的总安装量为922.3万颗,同比增长95.3%,2021Q1单车的摄像头安装量从2020Q1的1.559颗提升至1.779颗,市场对车载摄像头的需求量持续增加。


    根据Yole预测,2018年全球汽车平均每台搭载摄像头的数量为1.7颗,预计到2023年有望增加单车3颗左右,CAGR达12%。而对于高端车的搭载情况,根据Yole数据显示,高端车型的单车摄像头搭载数量从2014年的5颗提升到2020年的8颗,预计到2024年将超过11颗。

    随着IACC、HWA、HWP等各类高级ADAS功能落地,各种摄像头的需求量也在不断上升,驾驶员注意力监测需求上升,DMS摄像头也在快速上车。根据佐思汽研的数据,2021Q1中国乘用车市场DMS安装量同比增长554.5%,是各类车载摄像头中增速最快的,此外环视摄像头同比增速120.8%,前视摄像头同比增速103.0%,行车记录仪同比增速102.2%,后视摄像头同比增速60.6%,各类车载摄像头安装量快速提升。


    EEA架构集中化,有望带动摄像头成本下行


    EEA架构的集中化会促使算力集中化,进而加速传感器的硬件简化。以特斯拉为例,Model3的电子电气架构已经进入准中央架构阶段,由中央计算模块(CCM)、左车身控制模块(BCMLH)、右车身控制模块(BCMRH)三个部分组成,特斯拉的准中央E/E架构已带来了线束革命,ModelS/ModelX整车线束的长度是3公里,Model3整车线束的长度缩短到了1.5公里,ModelY进一步缩短到1公里左右,特斯拉最终的计划是将线束长度缩短至100米。整个架构的不断集中化,也带动了整个控制和算力的集中化,也避免了过往各ECU之间的算力冗余,进一步简化边缘端传感器,从而带动边缘段硬件成本的进一步下探。


    车内感知需求不断增加,DMS有望成为标配


    驾驶员监测系统(DMS,DriverMonitorSystem)是指驾驶员行驶过程中,全天候监测驾驶员的疲劳状态、危险驾驶行为的信息技术系统。在发现驾驶员出现疲劳、打哈欠、眯眼睛及其他错误驾驶状态后,DMS系统将会对此类行为进行及时的分析,并进行语音灯光提示,起到警示驾驶员,纠正错误驾驶行为的作用。


    DMS一般分为主动式DMS和被动式DMS。主动DMS系统从18年开始逐渐放量,21年1-9月DMS销量同比增长244%。自2006年起,雷克萨斯LS460首次配备主动DMS,随着近年来一系列的安全事故大大提高了DMS在自动辅助驾驶系统尤其是L2/L3功能上的的重要性。从2018年开始,随着L2和L3系统逐渐量产,主动式DMS系统开始放量。


    大部分Tier1已推出DMS完整解决方案,包括法雷奥、博世、大陆、电装、现代摩比斯、伟世通、维宁尔等。在中国企业中,百度、商汤科技、中科创达、经纬恒润等公司的DMS产品也已落地在各个品牌车型上。


    DMS的核心功能是监测驾驶员的疲劳和注意力分散程度。但是基于更多的传感器,视觉+红外摄像头,甚至毫米波雷达,可以实现更多的功能,譬如人脸识别、年龄性别估计、情绪估计、安全带检测、姿势位置、遗忘检测、座舱异常情况检测、幼儿检测等。


    通过人脸、性别和表情的识别,实现身份认证,以及更丰富的人车交互。目前DMS的应用仅停留在预警阶段,而一旦与ADAS/AD系统结合,还可以实现个性化车身控制等功能。



    04

    环境感知之三:毫米波雷达


    77GHz正在取代24GHz成为主流


    毫米波雷达是一种使用天线发射波长1-10mm、频率24-300GHz的毫米波(MillimeterWave,MMW)作为放射波的雷达传感器。毫米波雷达根据接收和发射毫米波的时间差,结合毫米波传播速度、载体速度及监测目标速度,可以获得汽车与其他物体相对距离、相对速度、角度及运动方向等物理环境信息。


    毫米波的波长介于厘米波和光波之间,因此毫米波兼有微波制导和光电制导的优点。与激光雷达(LiDAR)相比,目前毫米波雷达技术更加成熟、应用更加广泛、成本更加低廉;与可见光摄像头相比,毫米波雷达的准确性和稳定性更好,价格差距也在不断缩小。尤其是全天候工作无可替代的优势,已成为汽车电子厂商公认的主流选择,拥有巨大的市场需求。


    车载毫米波雷达根据毫米波频率可以分为24GHz、77GHz和79GHz毫米波雷达三大种类。


    车载毫米波雷达因具备受天气气候影响程度低、不受前方目标物形状与颜色等干扰等特性,广泛应用于主动安全系统。不同探测距离决定了不同类型毫米波雷达的应用场景不同,因此,不同高级辅助驾驶功能也需要不同的雷达选型。


    角雷达通常是SRR短程雷达负责盲点检测(BSD)、变道辅助(LCA)和前后交叉交通警报(F/RCTA)的要求,而前雷达通常是负责自动紧急制动(AEB)和自适应巡航控制(ACC)的MRR和LRR中远程雷达。毫米波雷达是高级辅助驾驶系统(ADAS)的必备传感器。


    77GHz车载激光雷达优势显著,正在逐渐替代24GHz成为主流。(1)77GHz雷达的分辨率和精度更高:由于速度分辨率和精度与射频成反比,更高的射频频率导致更好的速度分辨率和精度。77GHz的毫米波雷达比24GHz的速度分辨率和精度提高了3倍;(2)77GHz雷达的体积更小:77GHz天线列阵的间距仅为24GHz的三分之一,因此整个毫米雷达的体积也可以实现其三分之一。


    海外厂商正主导市场,国内正起步追赶

    国外毫米波雷达发展历史悠久,国产正在逐步追赶。1973年德国首次出现汽车防撞雷达,欧美大型毫米波雷达制造商已累积近40年的技术经验。早期的毫米波雷达采用高电子迁移晶体管制作集成电路,集成度低且成本高昂,直到2012年,英飞凌及飞思卡尔成功推出芯片级别的毫米波射频芯片,降低了毫米波波雷达的技术门槛,同时降低其制造成本,推动毫米波雷达在各领域的应用。


    2013年,24GHz毫米波雷达产品开始进入中国,2018年,实现24GHz毫米波雷达国产,但是在77GHz毫米波雷达产品仍未实现大规模国产化,只有少数国内厂商具备77GHz产品的量产能力,国产毫米波雷达仍在持续追赶中。


    毫米波雷达的硬件占比约50%,主要由射频前端(MMIC)、数字信号处理器、天线及控制电路等部分构成,软件算法占比约50%。


    射频前端(MMIC):是核心射频部分,占总成本的25%左右。由发射器、接收器、功率放大器、低噪声放大器、混频器、滤波器及压控振荡器组成,起到调制、发射、接收及解调毫米波信号的作用。在技术趋势上,集成度更高、体积更小的高集成趋势下,CMOS工艺有望成为主流。


    在供应商方面,加特兰微电子、意行半导体、矽杰微电子、矽典微等本土厂商已有能力自行研发生产低频24GHz芯片,且价格较海外有30%以上的优势。但在高频段77GHz芯片方面,主要由恩智浦、英飞凌、德州仪器、意法半导体等供应。


    数字信号处理器:通过嵌入不同的信号处理算法,分析前端收集的信号获取目标信息,是保证毫米波雷达稳定性及可靠性的核心部件,主要通过DSP芯片或FPGA芯片实现,占总成本的10%左右。在技术趋势上,DSP芯片在复杂算法处理上具备优势,FPGA在大数据底层算法上具备优势,“DSP+FPGA”融合在实时信号处理系统中的应用逐渐广泛。


    在供应商方面,高端DSP芯片和FPGA芯片主要被国外企业垄断,DSP芯片供应商有飞思卡尔、英飞凌、亚德诺半导体、意法半导体等,FPGA芯片供应商有赛灵思、阿尔特拉、美高森美、莱迪思等公司。


    高频PCB:天线是毫米波雷达发射和接收信号的重要组件,毫米波雷达可通过微带列阵方式将多根天线集成到PCB板上。由于毫米波频率高,对电路尺寸精度要求高,所需印制电路板为高频板材PCB,占总成本的10%。


    主要供应商为罗杰斯、Isola、施瓦茨为主,国内主要是沪电股份等公司。

    博世、大陆、电装、海拉等国外厂商占据全球毫米波雷达的七成市场份额。全球毫米波雷达主要供应商有博世、大陆、电装、海拉、天合、安波福、奥托立夫等。博世、大陆、电装、海拉等国外巨头占据行业73%的市场空间,行业集中度较高。


    维宁尔、大陆、海拉占据SRR市场,博世、大陆、电装等占据LRR市场。根据佐斯汽研的数据显示,维宁尔、大陆、海拉、安波福和法雷奥五家企业占据中国短程毫米波雷达(SRR)96.4%的市场空间,其中维宁尔排名第一,市占率32%;博世、大陆、电装和安波福占据长距毫米波雷达(LRR)95.7%的市场空间,博世排名第一,市占率高达40%。


    24GHz国产化率较高,77GHz仅少部分国产玩家实现量产。国产厂商已实现24GHz毫米波雷达产品市场化供货,而仅少数玩家具备77GHz毫米波雷达产品的量产能力,其中森思泰克是目前国内乘用车前装77GHz毫米波雷达市场份额排名首位的国产供应商,正在逐渐缩小与海外厂商的差距,其毫米波雷达的定点车型接近100个,而德赛西威、华域汽车等公司也已达到77GHz雷达的量产条件。


    05环境感知之四:超声波雷达


    成本优势显著,国产化率高,是成熟的车载传感器


    超声波雷达是最成熟的车载传感器。超声波雷达,俗称倒车雷达,是一种最常见的传感器,其工作原理是通过超声波发射装置向外发出超声波(机械波而非电磁波),到通过接收器接收到发送过来超声波时的时间差来测算距离。常用的工作频率有40kHz、48kHz和58kHz三种。


    超声波的能量消耗较缓慢,在介质中传播的距离比较远,穿透性强,测距的方法简单,成本低。但是超声波散射角大,方向性较差,在测量较远距离的目标时,其回波信号会比较弱,影响测量精度。但在短距离测量中,超声波测距传感器具有非常大的优势。超声波雷达防水、防尘,即使有少量的泥沙遮挡也不影响,探测范围在0.1-3米之间,而且精度较高,其主要作用是通过蜂鸣器来辅助驾驶员泊车、自动泊车的辅助与微调车辆在行车道的位置,保持与相邻车道车辆的安全距离。


    超声波雷达主要用于停车辅助和自动泊车,可以分为UPA和APA超声波雷达两种类型。


    在全球市场竞争格局上,目前超声波雷达主要市场空间由Tier1厂商占据,据统计,2018年全球超声波雷达市场份额中法雷奥和博世占据市场50%以上份额。截至2021年5月,汽车之家在售车型有8998款,配置了倒车雷达的车型有7074款,渗透率达到79%;其中配置前向雷达车型有2531款,渗透率达到28%。目前超声波雷达较为成熟,市场渗透率较高,价格下探到较低水平,已有像奥迪威等国产厂商切入到该市场。超声波雷达价格低廉,技术相对成熟。


    超声波雷达测距方式简单,产业链成熟,单体价格相对低廉,平均售价100元左右。超声波雷达上游主要为芯片和传感器供应商,芯片主要依赖进口,如飞思卡尔(恩智浦NXP收购)等厂商,传感器已经实现国产化。


    超声波雷达中游为超声波雷达生产商,主要参与者可以分为国际Tier1、国内Tier1以及初创公司。由于超声波雷达技术较为成熟,故国内外玩家之间的差距主要在于传感器实现上的稳定性和可靠性,但整体差异较小。其中国际Tier1主要是博世、法雷奥、大陆,国内Tier1主要是奥迪威、辉创电子、航盛电子、同致电子,初创企业有晟泰克、辅易航(中科创达收购)等。

    自动泊车(APA)渗透率快速提升,带来新的增长动能


    中国乘用车APA装配量快速增长,但装配率仅12.3%,增长空间巨大。根据高工汽车数据显示,2021年1-7月国内新车搭载APA功能上险量为142.55万辆,同比上年同期增长36.4%。其中,融合泊车(基于全景环视+超声波)占比32.83%,同比上年同期呈现数倍增长的势头。


    当前主机厂推出的自动泊车APA方案基本采用12颗超声波雷达。其中宝马、别克等以纯超声波雷达方案为主,部分主机厂则开始采用超声波雷达+环视摄像头融合方案提高车辆自动泊车系统的泊入/泊出成功率,主要集中在自主品牌如蔚来、小鹏、长安、吉利等。12颗超声波雷达方案的渗透率将从2019年的9.6%提升到2025年的26.1%。


    06

    车身感知:惯性导航、卫星导航、高精度地图


    本章主要针对车身感知定位系统进行介绍,车身感知主要是感知车辆位置、行驶速度、姿态方位等信息,下文分别介绍惯性导航、卫星导航系统和高精度地图三种主要的定位技术的发展情况,最后对多融合的车身感知定位系统及发展趋势进行介绍。


    07

    网联感知:车载端、路侧端、云端


    “车、路、云”一体化,C-V2X商业化落地进入倒计时


    车用无线通信技术(VehicletoEverything,V2X),是实现车与车(V2V)、车与路(V2I)、车与人(V2P)、车与网(V2N)相连接的新一代信息通信技术。V2X通过将人、车、路、云等交通参与要素有机地联系在一起,构建一个智慧的交通体系。整个V2X系统可以分为云端、路侧端与车载端。


    (因篇幅有限,以上是部分内容)

    次阅读
    评论
    赞同
    收藏
    分享
    评论
    赞同
    收藏
    分享

    评论·0

    头像头像
    提交评论
      加载中…

      热门资讯